

RBS-2016-004

Jensen of Scandinavia Air:Link Routers
Web Interface Multiple Vulnerabilities

2016-12-29 1 of 13

Table of Contents

Table of Contents​ ………………………………………………………………………………....… 2
Vendor / Product Information​ …………………………………………………………………….... 3
Vulnerable Program Details​ …………………………………………………………………...…… 3
Credits​ ………………………………………………………………………………………………. 3
Impact​ ………………………………………………………….…………………..………………... 4
Vulnerability Details​ ………………………………………………………………………………… 4

/goform/* Pages Stack-based Buffer Overflows​ ……………………….…………………….. 4
/goform/* Pages Shell Command Injection​ …………………………………………….…….. 6
/goform/* Pages Settings Manipulation CSRF​ ……………………………………………….. 8
/x.asp User Credentials Disclosure Weakness​ ………………………………………………. 8
/goform/ Pages submit-url Parameter Open Redirect Weaknesses​ ……………………….. 9
/goform/formLogout return-url Parameter Open Redirect Weakness​ ……………………… 10
Other Potential Issues​ …………………………………………………………………………. 11

Solution​ ………………………………………………………………………………...…………… 12
References​ ………………………………………………………………………….……………… 12
Timeline​ ……………………………………………………………………………………...……… 12
About Risk Based Security​ ………………………………………………………………………… 13

Company History​ …………………………………………………………………………..….. 13
Solutions​ ………………………………………………………………………………….…….. 13

2016-12-29 2 of 13

Vendor / Product Information

Jensen of Scandinavia AS is a Norwegian company that develops networking and multimedia
products and is a market leader in Scandinavia. As part of their networking product range is the
popular Air:Link wireless router series, which is intended for both home and office use.

Vulnerable Program Details

Details for tested products and versions:

Vendor: Jensen of Scandinavia AS
Product: Air:Link 3G (AL3G)
Version: 2.23m (Rev. 3)

Product: Air:Link 5000AC (AL5000AC)
Version: 1.13

Product: Air:Link 59300 (AL59300)
Version: 1.04 (Rev. 4)

NOTE: Other models and versions than the ones listed above are likely affected. The firmware
is an OEM solution also used by other vendors including Belkin and Edimax, so devices from
other vendors may also be vulnerable. In fact, it was found that some of the uncovered
vulnerabilities were previously publicly disclosed in products from other vendors and fixed in
some of these ​, . 1 2

Credits

Carsten Eiram, Risk Based Security
Twitter: ​@CarstenEiram
Twitter: ​@RiskBased

1 http://blog.vectranetworks.com/blog/belkin-analysis
2 http://seclists.org/bugtraq/2015/Dec/24

2016-12-29 3 of 13

https://twitter.com/carsteneiram
https://twitter.com/riskbased

Impact

Air:Link routers provide a web-based management interface for configuring the devices. The
web service is based on GoAhead Webserver (webs) and runs with ‘root’ privileges. It was
discovered that the web interface is affected by multiple shell command injection and
stack-based buffer overflow vulnerabilities when accessing various /goform/ resources as an
authenticated user. These allow execution of arbitrary code with ‘root’ privileges.

The devices are also affected by Cross-Site Request Forgery (CSRF) issues, which allow
user-assisted exploitation of the previously mentioned vulnerabilities. Finally, a minor password
disclosure and open redirect weaknesses were discovered.

Vulnerability Details

/goform/* Pages Stack-based Buffer Overflows

Many of the resources accessible in the /goform/ path are affected by stack-based buffer
overflows when handling supplied parameter values. These resources are not actual CGI
scripts, but implemented as procedures handled by the in-memory forms processor, GoForms,
in the ​/bin/webs ​ binary.

As these vulnerabilities are very similar in nature, only one of these, the /goform/mp resource,
will be covered as an example.

When the resource is accessed, the ​mp() ​ GoForms procedure within the ​/bin/webs ​ binary is
called, and the function retrieves the supplied ‘command’ parameter value.

.text:00457C3C mp: # DATA XREF: main+E1Co
.text:00457C3C # .got:mp_ptro
.text:00457C3C
.text:00457C3C var_218 = -0x218
.text:00457C3C szBuf1 = -0x210 # char[504]
.text:00457C3C var_18 = -0x18
.text:00457C3C var_14 = -0x14
.text:00457C3C var_10 = -0x10
.text:00457C3C var_C = -0xC
.text:00457C3C var_8 = -8
.text:00457C3C
.text:00457C3C li $gp, 0x5D004
.text:00457C44 addu $gp, $t9
.text:00457C48 addiu $sp, -0x228
.text:00457C4C sw $ra, 0x228+var_8($sp)
.text:00457C50 sw $s3, 0x228+var_C($sp)
.text:00457C54 sw $s2, 0x228+var_10($sp)

2016-12-29 4 of 13

.text:00457C58 sw $s1, 0x228+var_14($sp)

.text:00457C5C sw $s0, 0x228+var_18($sp)

.text:00457C60 sw $gp, 0x228+var_218($sp)

.text:00457C64 la $s3, aTypeTextJavasc

.text:00457C68 li $a1, 0x470000

.text:00457C6C la $t9, websGetVar

.text:00457C70 addiu $a2, $s3, (asc_45A164+4 - 0x460000) # ""

.text:00457C74 addiu $a1, (aCommand - 0x470000) # "command"

.text:00457C78 jalr $t9 ; websGetVar

.text:00457C7C move $s0, $a0

.text:00457C80 lw $gp, 0x228+var_218($sp)

.text:00457C84 move $a0, $s0

.text:00457C88 la $t9, websHeader

.text:00457C8C nop

.text:00457C90 jalr $t9 ; websHeader

.text:00457C94 move $s2, $v0

The function eventually passes the value to the ​sprintf() ​ function as argument when
attempting to construct the “​/bin/rftest.sh %s > /tmp/rftest.out​ ” string into a fixed-size stack
buffer. As no boundary checks are performed, this may lead to a stack-based buffer overflow.

.text:00457EA0 li $a1, 0x470000
.text:00457EA4 jalr $t9 ; websWrite
.text:00457EA8 addiu $a1, (aFontColorRedSF+0x14 - 0x470000) #
"
\n"
.text:00457EAC lw $gp, 0x228+var_218($sp)
.text:00457EB0 move $a2, $s2
.text:00457EB4 li $a1, 0x470000
.text:00457EB8 la $t9, sprintf
.text:00457EBC addiu $a1, (aBinRftest_shST - 0x470000) # "/bin/rftest.sh %s
> /tmp/rftest.out"
.text:00457EC0 jalr $t9 ; sprintf # b0f!
.text:00457EC4 addiu $a0, $sp, 0x228+szBuf1 # char *

Similar vulnerabilities exist for many other resources. The following table lists all affected
resources and parameters.

Affected /goform/* Resource Affected Parameter(s)

/goform/mp command

/goform/formSysCmd sysCmd

/goform/formUSBStorage sub_dir

/goform/TestTTCP localip, host, length, and number

/goform/formConnectionSetting max_Conn and timeOut

/goform/formWpsStart pinCode

2016-12-29 5 of 13

/goform/formWlanMP ateFunc, ateGain, ateTxCount, ateChan,
ateRate, ateMacID, e2pTxPower1,
e2pTxPower2, e2pTxPower3, e2pTxPower4,
e2pTxPower5, e2pTxPower6, e2pTxPower7,
e2pTx2Power1, e2pTx2Power2,
e2pTx2Power3, e2pTx2Power4,
e2pTx2Power5, e2pTx2Power6,
e2pTx2Power7, ateTxFreqOffset, ateMode,
ateBW, ateAntenna, e2pTxFreqOffset,
e2pTxPwDeltaB, e2pTxPwDeltaG,
e2pTxPwDeltaMix, e2pTxPwDeltaN, and
readE2P

/goform/formHwSet Anntena, Mcs, regDomain, nic0Addr,
nic1Addr, wlanAddr, wanAddr, wlanSSID,
wlanChan, comd, initgain, txcck, and txofdm

/goform/* Pages Shell Command Injection

Should exploitation of the stack-based buffer overflows require too much effort, affected devices
provide a simpler approach to execute code. All of the resources affected by the buffer
overflows are similarly affected by shell command injection. These vulnerabilities are also very
similar in nature. Only the ​formAccept() ​ GoForms procedure will be discussed as an
example.

When the /goform/formAccept resource is accessed, the associated ​formAccept() ​ GoForms
procedure in the ​/bin/webs ​ binary is called. The function retrieves the supplied ‘submit-url’
parameter value and passes it straight to the ​system() ​ C library function without any
validation.

.text:00453D30 formAccept: # DATA XREF: main+D90o
.text:00453D30 # .got:formAccept_ptro
.text:00453D30
.text:00453D30 var_18 = -0x18
.text:00453D30 var_10 = -0x10
.text:00453D30 var_C = -0xC
.text:00453D30 var_8 = -8
.text:00453D30
.text:00453D30 li $gp, 0x60F10
.text:00453D38 addu $gp, $t9
.text:00453D3C addiu $sp, -0x28
.text:00453D40 sw $ra, 0x28+var_8($sp)
.text:00453D44 sw $s1, 0x28+var_C($sp)
.text:00453D48 sw $s0, 0x28+var_10($sp)
.text:00453D4C sw $gp, 0x28+var_18($sp)
.text:00453D50 la $a1, aTypeTextJavasc

2016-12-29 6 of 13

.text:00453D54 la $a2, aTypeTextJavasc

.text:00453D58 la $t9, websGetVar

.text:00453D5C addiu $a1, (aSubmitUrl - 0x460000) # "submit-url"

.text:00453D60 addiu $a2, (asc_45A164+4 - 0x460000) # ""

.text:00453D64 jalr $t9 ; websGetVar

.text:00453D68 move $s1, $a0

.text:00453D6C lw $gp, 0x28+var_18($sp)

.text:00453D70 move $a0, $v0 # string

.text:00453D74 la $t9, system

.text:00453D78 nop

.text:00453D7C jalr $t9 ; system # shell cmd injection!

This allows injecting and executing arbitrary shell commands with ‘root’ privileges. The following
table lists all affected GoForms resources and parameters.

Affected /goform/* Resource Affected Parameter(s)

/goform/formAccept submit-url

/goform/mp command

/goform/formSysCmd sysCmd

/goform/formUSBStorage sub_dir

/goform/TestTTCP localip, host, length, and number

/goform/formConnectionSetting max_Conn and timeOut

/goform/formWpsStart pinCode

/goform/formWlanMP ateFunc, ateGain, ateTxCount, ateChan,
ateRate, ateMacID, e2pTxPower1,
e2pTxPower2, e2pTxPower3, e2pTxPower4,
e2pTxPower5, e2pTxPower6, e2pTxPower7,
e2pTx2Power1, e2pTx2Power2,
e2pTx2Power3, e2pTx2Power4,
e2pTx2Power5, e2pTx2Power6,
e2pTx2Power7, ateTxFreqOffset, ateMode,
ateBW, ateAntenna, e2pTxFreqOffset,
e2pTxPwDeltaB, e2pTxPwDeltaG,
e2pTxPwDeltaMix, e2pTxPwDeltaN, and
readE2P

/goform/formHwSet Anntena, Mcs, regDomain, nic0Addr,
nic1Addr, wlanAddr, wanAddr, wlanSSID,
wlanChan, comd, initgain, txcck, and txofdm

Access to the /goform/formSysCmd resource is also possible in a simpler fashion by navigating

2016-12-29 7 of 13

to the hidden ​http://[IP]/syscmd.asp ​ web page. This provides a basic interface to run
arbitrary commands on the device with ‘root’ privileges and view the output.

/goform/* Pages Settings Manipulation CSRF

Multiple Jensen Air:Link devices contain a flaw in the web-based management interface, as
HTTP requests to /goform/ pages do not require multiple steps, explicit confirmation, or a unique
token when performing certain sensitive actions. By tricking a user into following a specially
crafted link, a context-dependent attacker can perform a Cross-Site Request Forgery (CSRF /
XSRF) attack causing the victim to manipulate device settings.

The following example restarts the device by combining one of the shell command injection
vulnerabilities:
http://[IP]/goform/formAccept?submit-url=reboot;

/x.asp User Credentials Disclosure Weakness

In order for an administrative user to change the password for the web-based management
interface, the user has to re-authenticate by supplying the current password along with the new
password. This is a common defense-in-depth security precaution to e.g. prevent attackers, who

2016-12-29 8 of 13

somehow gained unauthorized access to a session, to change the password.

This defense-in-depth security precaution is ineffective for affected devices. The hidden ​x.asp
page allows an authenticated attacker to view the current ‘admin’ account password and
(hardcoded) ‘super’ account password.

It should be noted that it is not possible to log into the web-based management interface using
the ‘super’ account credentials.

/goform/ Pages submit-url Parameter Open Redirect Weaknesses

45 different GoForms resources e.g. /goform/formStats, /goform/formAccept, and
/goform/formrefresh accept the ‘submit-url’ parameter and redirect to the provided URL
argument without any restrictions.

As these weaknesses are all similar in nature, only the ​formStats() ​ GoForms procedure will
be discussed as an example.

Upon accessing the /goform/formStats resource, the associated function within the ​/bin/webs
binary is called. The value supplied to the ‘submit-url’ parameter is retrieved and passed as
argument to the ​websRedirect() ​ function provided by the GoAhead native API. This results
in a 302 HTTP response being returned to the client with the ‘Location’ header set to the
specified URL. No checks are performed to limit redirection to only resources on the same
domain.

.text:00457808 formStats: # DATA XREF: main+E00o
.text:00457808 # .got:formStats_ptro
.text:00457808
.text:00457808 var_10 = -0x10
.text:00457808 var_8 = -8
.text:00457808 var_4 = -4
.text:00457808
.text:00457808 li $gp, 0x5D438
.text:00457810 addu $gp, $t9
.text:00457814 addiu $sp, -0x20
.text:00457818 sw $ra, 0x20+var_4($sp)
.text:0045781C sw $s0, 0x20+var_8($sp)

2016-12-29 9 of 13

.text:00457820 sw $gp, 0x20+var_10($sp)

.text:00457824 la $a1, aTypeTextJavasc #
"type='text/javascript'>document.write(s"...
.text:00457828 la $a2, aTypeTextJavasc #
"type='text/javascript'>document.write(s"...
.text:0045782C la $t9, websGetVar
.text:00457830 addiu $a1, (aSubmitUrl - 0x460000) # "submit-url"
.text:00457834 addiu $a2, (asc_45A164+4 - 0x460000) # ""
.text:00457838 jalr $t9 ; websGetVar
.text:0045783C move $s0, $a0
.text:00457840 move $a1, $v0
.text:00457844 lw $gp, 0x20+var_10($sp)
.text:00457848 lb $v0, 0($v0)
.text:0045784C la $t9, websRedirect
.text:00457850 beqz $v0, loc_457868
.text:00457854 move $a0, $s0
.text:00457858 lw $ra, 0x20+var_4($sp)
.text:0045785C lw $s0, 0x20+var_8($sp)
.text:00457860 jr $t9 ; websRedirect

This allows an attacker to create a specially crafted link that, if followed by a victim, would
redirect from the intended legitimate web interface to an arbitrary web site of the attacker's
choosing. Such attacks are useful as the crafted URL initially appears to be a web page of a
trusted site. This could be leveraged to e.g. conduct phishing attacks that mimic the legitimate
site, but send user-supplied information to the attacker.

Example:
http://[IP]/goform/formStats?submit-url=http://[malicious_site]

/goform/formLogout return-url Parameter Open Redirect Weakness

Similar to how the ‘submit-url’ permits open redirects for many GoForms resources, the
/goform/formLogout resource is affected when handling the ‘return-url’ parameter.

.text:00455F78 formLogout: # DATA XREF: main+71Co
.text:00455F78 # .got:formLogout_ptro
.text:00455F78
.text:00455F78 var_18 = -0x18
.text:00455F78 var_10 = -0x10
.text:00455F78 var_C = -0xC
.text:00455F78 var_8 = -8
.text:00455F78
.text:00455F78 li $gp, 0x5ECC8
.text:00455F80 addu $gp, $t9
.text:00455F84 addiu $sp, -0x28
…
.text:00455FA0 la $t9, websGetVar
.text:00455FA4 addiu $a1, (aLogout - 0x460000) # "logout"
.text:00455FA8 addiu $a2, $s0, (asc_45A164+4 - 0x460000) # ""
.text:00455FAC jalr $t9 ; websGetVar

2016-12-29 10 of 13

.text:00455FB0 move $s1, $a0

.text:00455FB4 lw $gp, 0x28+var_18($sp)

.text:00455FB8 lb $v0, 0($v0)

.text:00455FBC la $a1, aTypeTextJavasc

.text:00455FC0 la $t9, websGetVar

.text:00455FC4 addiu $a1, (aReturnUrl - 0x460000) # "return-url"

.text:00455FC8 addiu $a2, $s0, (asc_45A164+4 - 0x460000) # ""

.text:00455FCC beqz $v0, loc_455FE0
…
.text:00455FE0 loc_455FE0: # CODE XREF: formLogout+54j
.text:00455FE0 jalr $t9 ; websGetVar
.text:00455FE4 nop
.text:00455FE8 lw $gp, 0x28+var_18($sp)
.text:00455FEC move $a0, $s1
.text:00455FF0 la $t9, websRedirect
.text:00455FF4 nop
.text:00455FF8 jalr $t9 ; websRedirect
.text:00455FFC move $a1, $v0

Similar to the weaknesses discussed above, this may be exploited to e.g. conduct phishing
attacks.

Example:
http://[IP]/goform/formLogout?return-url=http://[malicious_site]

Other Potential Issues

It should be noted that other vulnerabilities including XSS (Cross-Site Scripting) and HTTP
header injection were previously reported by other researchers in products from other vendors 3

using the same or similar OEM firmware.

These issues likely also affect the discussed Air:Link devices from Jensen of Scandinavia.
However, after having uncovered 40+ distinct vulnerabilities, we decided to terminate our
analysis. More issues are likely to be found. Clearly the vendor should invest in a thorough
security assessment of their products.

3 http://www.s3cur1ty.de/node/673

2016-12-29 11 of 13

Solution

The vendor was unresponsive when contacted. We are not currently aware of a solution for
these vulnerabilities. As the vendor advertises a 20 year guarantee on their devices , we 4

encourage customers to make use of this by either requesting a refund or demanding that the
vulnerabilities are addressed in a timely manner.

References

RBS: RBS-2016-004 5

VulnDB IDs: 148933, 148932, 148936, 148945, 148937, 148938, 148941, 148934,
148935, 148940, 148939, 148942, 148943, 148944, 148951, 148950,
148949, 148948, 148947, 148946

Timeline

2016-11-28 Vulnerabilities discovered.
2016-11-29 Vulnerabilities reported to the vendor
2016-12-19 No vendor response. Alerts sent to RBS VulnDB clients.
2016-12-29 Publication of this vulnerability report.

4 http://www.jensenofscandinavia.com/en/warranty/
5 https://www.riskbasedsecurity.com/research/RBS-2016-004.pdf

2016-12-29 12 of 13

About Risk Based Security

Risk Based Security offers clients fully integrated security solutions, combining real-time
vulnerability and threat data, as well as the analytical resources to understand the implications
of the data, resulting in not just security, but the ​right​ security.

Company History

Risk Based Security, Inc. (RBS) was established to support organizations with the technology to
turn security data into actionable information and a competitive advantage. We do so by
enhancing the research available and providing a first of its kind risk identification and
evidence-based security management service.

As a data driven and vendor neutral organization, RBS is able to deliver focused security
solutions that are timely, cost effective, and built to address the specific threats and
vulnerabilities most relevant to the organizations we serve. We not only maintain vulnerability
and data breach databases, we also use this information to inform our entire practice.

Solutions

VulnDB​ - Vulnerability intelligence, alerting, and third party library tracking based on the largest
and most comprehensive vulnerability database in the world. Available as feature-rich SaaS
portal or powerful API. Vendor evaluations including our Vulnerability Timeline and Exposure
Metrics (VTEM), Cost of Ownership ratings, and Social Risk Scores.

Cyber Risk Analytics​ - Extensive data breach database including interactive dashboards and
breach analytics. Clients are able to gather and analyze security threat and data breach
information on businesses, industries, geographies, and causes of loss. It also allows
monitoring of domains for data breaches and leaked credentials as well as implementing a
continuous vendor management program with our PreBreach data.

YourCISO​ - Revolutionary service that provides organizations an affordable security solution
including policies, vulnerability scans, awareness material, incident response, and access to
high quality information security resources and consulting services.

Vulnerability Assessments (VA) and Pentesting​ - Regularly scheduled VAs and pentests
help an organization identify weaknesses before the bad guys do. Managing the most
comprehensive VDB puts us in a unique position to offer comprehensive assessments,
combining the latest in scanning technology and our own data. Detailed and actionable reports
are provided in a clear and easy to understand language.

Security Development Lifecycle (SDL)​ - Consulting, auditing, and verification specialized in
breaking code, which in turn greatly increases the security of products.

2016-12-29 13 of 13

https://vulndb.cyberriskanalytics.com/
https://www.cyberriskanalytics.com/
https://yourciso.com/

